
 

Getting Started II:  Review of Sample Statistics and Optimization 
 
• Sample Statistics 
• Standardized/Normalized Variables 
• Optimization:  FOCs and SOCs 

 
Sample Statistics 

1. We will make extensive use of Sample Statistics in this course, so it'll be useful to review 
those concepts (which you should have previously seen in your statistics course)… and to 
introduce the notation that we'll be using over the course of the semester. 

2. You have a dataset consisting of n observations of two variables ( , )x y : ( ){ }, 1, 2,... .i ix y i n=   
So, for example, you might have randomly selected fifty individuals from a population and 
observed their heights and weights.  In that case, the i's would track the individuals, and the 
x's and y's might reflect their heights and weights, respectively, so that ix  would be the 
height of person i and iy  would be his or her weight. 

3. The sample mean (average): 

a. 1
ix x

n
= ∑  and 1

iy y
n

= ∑ .  Note that ix nx=∑ . 

4. Deviations from means:   

a. ( )i idx x x= −  and ( )i idy y y= −  

b. By construction, the total/sum of the deviations from the means for any variable will be 
zero:  ( )( ) 0i i idx x x x nx= − = − =∑ ∑ ∑  and ( ) 0i idy y y= − =∑ ∑ . 

5. The sample variance:   

a. 2 2 21 1( ) ( )
1 1xx x i iS S dx x x

n n
= = = −

− −∑ ∑  and likewise for the y's. 

b. This is almost the average squared deviation from the mean (except we divide by n-1, not 
n…  the reason for this will become clear when we consider unbiased estimation). 

c. Also:  Since ix nx=∑ , 
2 2

2 21
1 1 1

i
xx i

x nxnS x x
n n n

−
= − =

− − −
∑∑ . 

6. The sample standard deviation:   

a. 2 2 21 1( ) ( )
1 1x xx x i iS S S dx x x

n n
= = = = −

− −∑ ∑ , and likewise for the y's.   

b. This is the square root of the Sample Variance.  Since the Sample Variance is sort of an 
average squared deviation from the mean, this is sort of an average deviation from the 
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sample mean… but that's not quite right, of course.  It is however a useful way to think of 
the sample standard deviation, sort of. 

7. The sample covariance:   

a. ( ) 1 1cov , ( )( )
1 1 1xy i i i i

nx y S x x y y x y xy
n n n

= = − − = −
− − −∑ ∑ , since ix nx=∑  and 

iy ny=∑ . 

b. Again, almost the average product of the deviations from the means (except we again 
divide by n-1, not n…  and yes, this is also related to unbiased estimation). 

c. Some intuition/examples:  In the following examples, 0x =  and 0y = .  On the left, 
most of the data are in quadrants I and III, where ( )( ) 0i ix x y y− − > , and so when you 
sum those products, as you do in calculating xyS , you get a positive sample covariance.  
Most of the action on the right is in quadrants II and IV where ( )( ) 0i ix x y y− − < , and so 
those products sum to a negative number, and we have a negative covariance. 

 

              
 

d. A few properties:   

i. The covariance of x with itself is the variance of x:

( ) 21 1cov , ( )( ) ( )
1 1i i i xxx x x x x x x x S

n n
= − − = − =

− −∑ ∑  

ii. The covariance of a sum is the sum of the variances plus twice the covariance:

( ) [ ]21var ( ) ( )
1 i ix y x y x y

n
+ = + − +

− ∑
2 21 ( ) 2( )( ) ( ) 2

1 i i i i xx xy yyx x x x y y y y S S S
n

 = − + − − + − = + + − ∑  

1. If 0xyS = , then ( )var var( ) var( )xx yyx y S S x y+ = + = +  
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iii. The covariance of linear transformations of the x's and y's:

( ) ( ) ( ) ( ) ( )1cov ,
1 i ia bx c dy a bx a bx c dx c dx

n
   + + = + − + + − +   − ∑  

( ) ( ) ( )1 cov ,
1 i i xyb x x d y y bdS bd x y

n
   = − − = =   − ∑  

iv. The covariance of x with sums of variables:  

( ) ( ) ( ) ( )1cov ,
1 i i ix y z x x y z y z

n
 + = − + − + − ∑

( )( ) ( )( )1 1
1 1i i i i xy xzx x y y x x z z S S

n n
= − − + − − = +

− −∑ ∑
( ) ( )cov , cov ,x y x z= + … the sum of the covariances of x with each other variable. 

v. And finally, since ( ) ( ) 0i i ix y y x y y x y nxy nxy nxy− = − = − = − =∑ ∑ ∑ , we can 
drop either x  or y  (but not both!) from the equation for the sample covariance.  So: 

1 ( )
1xy i iS x y y

n
= −

− ∑  and 1 ( )
1xy i iS x x y

n
= −

− ∑ . 

vi. These formulas will be useful later in the semester. 

8. The sample correlation:   

a. xy
xy

x y

S
S S

ρ = , the ratio of the sample covariance to the product of the sample standard 

deviations.   

b. It may not be obvious, but by construction, 1, 1 1xy xyorρ ρ≤ − ≤ ≤  .1 

c. If 0xyS = , the sample covariance is 0 and the sample correlation is also 0.  And if the 
sample covariance is negative (positive), then so is the sample correlation (since sample 
standard deviations are always positive, so long as they are well defined and not zero). 

d. If xyρ  is close to 1 then the relationship between x and y will look quite linear (with a 
positive slope if 1xyρ 

, and a negative slope if 1xyρ − .   

i. If there is in fact an exact linear relationship between the x’s and y’s (so that
0 1i iy xβ β= + , where 0β  is the intercept and 1β  is the slope)… then the sample 

correlation between the x's and the y's is  +1 if 1 0β > ,  –1 if 1 0β < , and 0 if 1 0β = . 

e. And as xyρ  gets closer to 0, the relationship between x and y looks less and less linear. 

f. So:  Correlation captures the extent to which x and y are moving together in a linear 
fashion.   

  

                                                 
1 This follows from the Cauchy–Schwarz inequality. 
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g. Here are some examples:2 

 

  

.635xyρ =  .991xyρ =  

  

.652xyρ = −  .959xyρ = −  

 
 
Standardized/Normalized Variables 

9. For reasons that will later become clear, it is sometimes useful to standardize, or normalize, 
variables.  We do this with a particular linear transformation… by first subtracting the 
variable's mean from each observation, and then dividing each new value by the variable's 

standard deviation:  i
i

x

x x
z

S
−

=  . 

  

                                                 
2 Sampling 50 times from a bivariate Standard Normal distribution. 
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10. Means and variances:  The result is a transformed variable, z, with mean 0 and variance 1: 

a. Sample Mean of the 'iz s :  0
x

x xz
S
−

= =  

b. Sample Variance of the 'iz s :  2 21 1( )
1 1zz i iS z z z

n n
= − =

− −∑ ∑  since 0z = , and so 
2

2
2

1 1 1 1( ) 1
1 1

i
zz i xx

x xxx

x x
S x x S

n S n SS
 −

= = − = = − − 
∑ ∑  

11. Covariances and correlations:  While sample covariances will typically be impacted by 
standardization, sample correlations will not.  Let's use * to indicate normalized 

/standardized, so:  * i
i

x

x x
x

S
−

=  and * i
i

y

y y
y

S
−

= .  Then it's easy to show that: 

a. Sample Covariances:  * *
* *

1 1 1 ( )( )
1 1

xy
x y i i i i xy

x y x y

S
S x y x x y y

n S S n S S
ρ= = − − = =

− −∑ ∑ .   

i. Note that the sample covariance of two standardized variables is also their sample 
correlation. 

b. Sample Correlations:  * *
* * * *

* *

x y
x y x y

x y

S
S

S S
ρ = = .since * * 1x yS S= =  , and so:  

* * * *
xy

x y x y xy
x y

S
S

S S
ρ ρ= = = . 

12. The correlation result will be especially useful later, so to repeat:   

Standardization will typically affect sample means, variances and covariances of 
variables… but it does not impact sample correlations. 

 
 
Optimization:  FOCs and SOCs 

13. For most of the semester we'll be focusing on using Ordinary Least Squares (OLS) to 
estimate unknown parameter values.  When running OLS, we are solving an optimization 
problem:  What coefficients minimize the sum of the squared differences between predicted 
and actual values?   

14. This is a minimization problem.  We'll call these differences between predicted and actual 
values residuals… and the sum of the squared residuals SSRs, for, well, Sum of Squared 
Residuals.  Since we are trying to minimize SSRs, we call SSR the Objective Function 
(which is to be minimized). 

15. And if time permits, we might also look at a second approach to estimation called Maximum 
Likelihood Estimation (MLE).  When running MLE models, the objective is to find the 
coefficient values that maximize the value of the associated likelihood function.  This is a 
maximization problem.  
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16. There are many ways to solve optimization problems.  Probably the most common approach 
is to use what are called:  

a. First Order Conditions (FOCs) to identify solution candidates, and  

b. Second Order Conditions (SOCs) to establish that the candidates do in fact minimize or 
maximize the objective function.3 

17. You'll see below that I will distinguish between local and global optimums.  To explain, I 
focus on the case of minimization: 

a. local minimum (in a neighborhood of x*):  x* is a local minimum if the value of the 
function at x* is no greater that the value of the function in a small neighborhood around 
x*.   

b. global minimum (everywhere): And x* provides a global minimum if the value of the 
function at x* is no greater that all other values of the function.   

18. A Picture:  The following Figure shows FOCs and SOCs in action, and considers a 
minimization problem.4   

a. In this Figure, and moving x left to right, the function ( )f x  is decreasing as x increases 
towards 1, reaches a minimum value when x=1 and increases as x moves to higher 
values.   

b. Notice also that to the left of x=1, the derivative (slope) of the function is negative, and to 
the right of x=1 it is positive.   

c. And most importantly, when x=1, the derivative is 0 (the function flattens out for a brief 
moment)… and that only happens at x=1. 

 
  

                                                 
3 We'll assume that the objective function is continuously differentiable. 
4 You should also have seen FOCs and SOCs in action in you Micro Theory course. 
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d. FOC:  First Order Condition 
i. Optimization candidates must have a zero first derivative:  ( *) 0f x′ = .   

ii. If that is not the case, then small movements left or right of x* will lead to smaller or 
larger values of the objective function…  which is to say that there are better 
candidates, and x* does not give us a maximum or a minimum value of the objective 
function. 

e. As the following Figure illustrates, there may be multiple candidates for which the FOC 
is satisfied.  If we are fortunate, we'll be able to choose between the candidates using a 
SOC: 

 
 

f. SOC: Second Order Condition 
i. Minimization:   

1. We have a local minimum at x* if the FOC is satisfied, so ( *) 0f x′ = , and if the 
function is concave up (we used to say convex) at x*, so that ( *) 0f x′′ > .   

2. This second order condition (involving the second derivative) assures us that in 
the neighborhood of x*, the objective function is declining to the left of x* and 
increasing to the right… which means that x* is a local minimum.  In the Figure 
above, this happens at x* = 1.5. 

3. If ( ) 0f x′′ >  for all x's then the function is strictly concave up and we have a 
global minimum at x*. 

ii. Maximization:   

1. We have a local maximum at x* if the FOC is satisfied, so ( *) 0f x′ = , and if the 
function is now concave down (we used to say concave) at x*, so that ( *) 0f x′′ < .   
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2. This second order condition assures us that we have a local maximum at x*, since 
the function is increasing to the left of x* and decreasing to the right.  In the 
Figure above, this happens at x* = 0.5. 

3. If ( ) 0f x′′ <  for all x's then the function is strictly concave down and we have a 
global maximum at x*. 

 

19. Summary: 

a. FOCs - Identify solution candidates:  Use FOCs to identify candidates for solving the 
optimization problem.  So start by finding the x* values for which ( *) 0f x′ = . 

b. SOCs - Check to see if have a min or max:  Sign the SOC for each identified candidate:  
What is the sign of ( )f x′′ ?  If the second derivative at x* is negative (so ( *) 0f x′′ < ), 
then we have a local maximum, and if it's positive (so ( *) 0f x′′ > ) then we have a local 
minimum, 

c. Local v. global:  And if the SOC is always of the same sign ( ( )f x′′  is always positive or 
always negative, for any x), then we have global maximums or minimums. 

 

20. An Example:  Estimate the unknown mean of a distribution 

a. You are interested in estimating µ , the mean of the distribution of some random variable 
Y, and decide to randomly sample n times from this distribution.  Your dataset consists of 
n observations:  { } 1,2,...iy i n= .   

b. There are many many ways to estimate the unknown mean µ  with the given sampled 
data.  Here's one that perhaps you haven't previously encountered: 

To estimate µ , find the number m that is closest to the observed sample. 

c. So implement this estimator, you'll need to decide on how you'll be measuring closeness.  
There are lots of such metrics.  Here's one, which plays a prominent role in least squares 
regression analysis: 

Sum Squared Residuals (SSR):  ( )2
iSSR y m= −∑  

The difference between the observed (sampled) value iy  and the estimate m , iy m− , is 
called the residual (sometimes we refer to this as the difference between the actual and 
the estimate).  To generate SSRs, you square the residuals and then add them up. 

d. To measure closeness, you might be inclined to just add up the residuals.  But then you'd 
allow positive and negative residuals to offset one another, which makes no sense.  You 
avoid this by squaring the residuals first before summing them. 

i. You might ask:  Why not just sum the absolute values of the residuals?  That, of 
course makes lots of sense.  However it turns out that that approach is not as 
analytically simple/straightforward, and so we turn to SSRs. 
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e. The minimization problem: 

Find the m that minimizes ( )2
iSSR y m= −∑  

f. We have the following FOC and SOC for the minimization problem: 

i. FOC:  2( )( 1) 0i
dSSR y m
dm

= − − =∑  and so * *iy m nm= =∑ ∑  and 

1* im y y
n

= =∑ . 

And so the only SSR minimization candidate satisfying the FOC is the sample mean, 
y . 

ii. SOC: 
2

2 2( 1)( 1) 2 0d SSR n
dm

= − − = >∑ .   

Since 
2

2 0d SSR
dm

>  for all m, SSR is concave up in m, and we have a global minimum 

at the m value that satisfies the FOC. 

g. Since the SOC is always satisfied and since the FOC is satisfied at 1* im y y
n

= =∑ , we 

find that the value of m that minimizes ( )2
iSSR y m= −∑  is sample mean of the y's. 

h. Who knew?  And so the sample mean is a least squares estimator of the unknown 
population mean µ .  We'll be returning to this example later in the semester. 

21. …  with five data points 

a. You have n=5 observations of the variable y, {0,1, 2,3, 4}.  The sample mean for these 
observations is 2.  For this sample,  

( )2 2 2 2 2(0 ) (1 ) (2 ) (3 ) (4 )SSR m m m m m= − + − + − + − + − . 

b. The following Figure shows the SSRs for different m values given these five datapoints.  

Notice that SSRs are declining 
as m increases to 2, reach a 
minimum at m=2 and increase 
thereafter.   

c. Not surprisingly, the eyeball test 
confirms what you saw above: 

i. the FOC is satisfied at m*=2, 
and 

ii. the SOC is also satisfied. 0
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